SECTION
 M

AUTO STARTERS, HAND STARTERS AND MACHINES

 sub-section M A auto starters| W | SIZE | PAGE | MA2 |
| :---: | :---: | :---: | :---: |
| x | $"$ | $"$ | MA4 |
| y | $"$ | $"$ | MA6 |
| z | $"$ | $"$ | MA8 |

SUB-SECTION MB MACHINES AND HAND STARTERS

MACHINES
PAGE MB2
HAND STARTERS PAGE MB6

Date of deaign:Foner rating -
Reference:-
1980.

1 to 3 kN 。
Admiralby Handbook of W/T (1931) paregraph 247.

The wize autonatic starter is somswhat similar to the 2 size (see page MAS); it is sore: what simpler however and wdll in future be adopted for mahiinss of 3 KH and leas wherever possible ($i_{0} e_{0}$, wherever the machines are stasted with no load). A complete aketch of the startar is shom in figure a.

The ataring solenoid $\cos 1$ (10) is of difierent winding for $100 / 110$ volt and 220 volt start.ers respectively, and also when in 220 volt etaxtaxa 190 Frovided with a reduoing resistance (i
 Andiniped. unplies usialiy of the order of 895 ohweft in
The resiftances used are as Iollows:-

A simplified skestoh of the opersting oiroutte is Bhown in $\mathbb{P i g u t e s} b_{0}$, and of the motar starting oirouits in figure c.

When the "ON" push (27) is pressed the oirouit is ocmpleted from positive through the re ducing resistance. (1) (if in use) the eoonomy switch (8) the oddy ourcent brake ooll (8) the starting solenold ooll (10) the oontacts of the overicad switoh (29) and the "or" push (27) to negative: When the operation of starting is ocumpleted, the edonomy switoh (θ) is open oirouited by means of a stud on the connecting bar between the bolenoid rod and the oonteot bare (12) and the eddy curerent brake coil (8) thereby out out cef ciroult. The molenoid ooil (10) i.a then kept energised, however, through the economy resistanoe (16), which is co a mush highere crecise bhan the resistance of the ediy current brake coil (8).

The self sustaining switoh (11) in this staxter is a V shaped insulated piug fixed to the lower end of the startiag salenoid am which opens two oontsacts of a jaok when the starter is in the "OFF" position and arbas the contacts to olose when the arm has moved a short distance of its uravel upward.

The overload switch (29) will break the ofroutit of the starting solenoid (10) if the outrent to the motor armature (24) is excessive. The overload switoh (29) oan be made to operate between 30 and 60 amps fic $100 / 110$ volt starters and 20 and 40 amps for 2220 volt starters by an adjusting sorew (34) which varies the travel betweon the otherload switch armature and the over coad coll.

The magnetic blow out (4) functions at the last oonnecting atop (13) of the starting resistance and has an asbestas plate sa a protection from sroing.

A separate copper stop (15) conneots dureotily with the oontact arin (12) when the starter is full on to short oircuit the stops of the staxting resistance (19) in dase of bed contact between the contact arm (12) and the intermediate stops.

The starting resistanoe (19) reduoing resiatance (1) and eoonomy resistance (16) are mounted on the back of the starter panel, as shown in ifgure e, and the starter is therefore self contained.

Fig.e

AUTOMATIC STARTER SIZE \times

MA 5
Date of liesxign-
Power rating:-
19\%.
8 to 20 kV.
Reference:- Admiralty Handbook of $W /$ (1931) paragraph 247.
The "X" size auto starter is the largest size automatic starter used with service W/T machines.

A complete sketch of the starter is shown in ilgure as which is identical with figure 102 of the Admiralty Handbook of W/T (1931) and the action of the starter is clearly explained in paragraph 24%.

No overload switch is fitted as the starter and machines are protected by circuit breakers or fuses in the supply to the starter.

The starting resistance (19) forms a separate unit from the starter but the reducing resistance (1) and economy resistance (16) are fitted on the back of the starter panel.

Fig.a.

Date of deaign:-
Power rating: - " Reference:-

Admiralty Hanabook of W/T (1931) paragraph 247.
The Y size automatio starter is scmewhat similar to the X aize, see page MA5, but has an overloed switch (29) fitted.

A complete sketah of the starter is shown in iigure a. a simplified alestoh of the operating oircuits in figure b_{0}, and of the motor starting oircuits in figure o_{0}

The bobbin of the overlced switch (29) is conneoted in parallel with a shunt resistanco (30) by means of a link (31). The linis (31) is removed when the starter is used with machines smaller than 5 kW . so that the whole motar surcent passes through the bobbin to operate the overicend. switoh (29).

With the exception of the overload awitch (29) shunt resistance (30) and link (31) figure a, is similar to figure 102 of the Admiralty Handbook of W/T (1931) and the action: of the stacter is clearly explained in paragraph 247.

In type I sive staxters the reduaing rasistanos (1) eounong restatance
(18) and starting resistance (19) are fitted togethar and form a separate unit from the starter.

No self sustaining switoh (11) is fitted in the earlier types and the starter is switahad on by a single switch, in place of the "ON" push (27), which remains olosed after making and is not broken until switched off by the operatar. Should the overload switoh (29) operate under these conditions the ofrouit through the solenoid ooil (10) is broken and the starter falls aff. The overload switch (29) will then return to its normel position, completing the cirouit through the solenoid coil (10), and the starter is again switched on If the oucrent through the overlosd (29) is still excessive the overload switch (29) will again operate and the solenoid oirouit again be broken. The overload will therefore continue to break and make the solenoid bobbin oirouit, switohing the starter off and on, as long as the motor is taking an excessive ourerent, causing the starter to "ohatter"。

To avoid this a retaining catch (32) is fitted to the overloed switoh (29) in the earlier type of Y size starters whioh retains the overload switch (29) in the off position until reset by hand. Figures d_{0} and e. show the later type.
NOIE:- The W and Z size starters have no retaining catoh (32) and will therefore "chatter" when an overload ocours if the control is wired through a single switch as stated above.

AUTOMATIC STARTER SIZE Z

Fis. a.

AUTOMATIC STARTER SIZE Z

Date of dasign:-
Power rating:
Raference. -
1926.

The Z size autcwatic sterter is one of the earlier type of starters and will be replaced by the W size in due course.

A complete akstoh of the starter ie ahown in figure a. a simplified sketah of the operating oirouits in figure b. and of the motore starting ofrouits in figure 0 .

Whan the "CW" push (27) is gressed the oivoult is completed from positive through the over:Ioad oofl (29) the eddy orerent brake switch (33) the reduaing resistance (1) (if in wis) the contacte of the overload switch (29) the starting molenoid ooil (10) and the "OW" push (27) to nogativa.

The eddy ourrent brake switoh (33) short oirouits the eddy current braks coil (8) and economg switoh (8) when the starter is in the off position by making oontact with an extension at the bottom of the atarter arm A stud on the starter panal limits the movement of the eddy ourrent brake switch (38) and breaks the contaot between the starter arm (12) and the awitch (33) when the starter arm moves a short distance upward.

The economy resistance (16) is shact aircuited by the bobbin of the overload switoh (29) and the coil of the eddy curcent brake (8) (whioh are of a muoh lower resistance than the eooncmy resietance (16)) when the econory switch (9) is olosed.

The final movement of the starter axm (12) operates the eoonomy switch (9) whioh breaks the airouit of the eddy current braks oofl (8) and thus the shact oircuit of the economy resistance (16). This has the effeot of introducing the economy resistance (16) in the oircuit to the starting sols noid coil (10).

The bobbin of the overloed switch (29) is in the operating cirouits of the atastese, as shown in figure $b_{\text {s }}$ until the econcuy switch (9) is broken. When the economy switoh (9) has been broken by the startar arm (12) the bobbin of the overioad switoh (29) is in the supply to the motop only as shown in Pidure a. The overload switoh (29) will break the circuit of the starting anlenoid (10) and switoh the starter off if the ourrent to the motcr is excessive.

The magnotio blow out (4) funotions at the last connecting stop (13) of the starting masistance to prevent arcing. A soparate copper stop (15) connects directly with the conteast arm (12) when the starter is full on to shart circuit the stops of the starting resistance (19) in aase of bad oontact between the contact am (12) and the intermediate atops.

The self sustaining switoh (11) and "OFF" push (28) function as described in Admiralyy Hendbook of W / T (1931) paragraph 24%.

The starting resistance (19) reduaing resistance (1) and economy resistance (18) sme mounted behind the starter panel as a separate unit and secured to the panal by bolts.

